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CRITICAL DAMPING IN CERTAIN LINEAR

CONTINUOUS DYNAMIC SYSTEMS

0. E. BESKOS*
Department of Civil and Mineral Engineering

University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.

B. A. BOLEY**
The Technological Institute

Northwestern University, Evanston, Illinois 60201, U.S.A.

Abstract

Free damped vibrations of linear elastic structures composed of uniform

beam elements with a continuous distribution of mass are studied. Axial,

torsional and flexural vibrations are considered. The amount of damping,

which can be either internal or external viscous type, varies among the

various beam elements of the structure resulting in many critical damping

possibilities. A general method is developed which, with the aid of dynamic

stiffness influence coefficients defined for every element, determines the

"Icritical damping surfaces" of the system. These surfaces represent the

4 j loci of combinations of amounts of damping leading to critically damped

motion and thus separating regions of partial or complete underdamping from

those of overdamping. The dimension of a critical damping surface is equal

to the number of independent amounts of damping present in the system,

while the number of these surfaces is infinite, i.e., equal to the number

of degrees of freedom of the system. Three examples are presented in detail

to illustrate the proposed method for determining critical damping and

demonstrate its importance.

*Associate Professor
**Dean of the Technological Institute



1. INTRODUCTION

The importance of damping as a means of reducing the response of a

vibrating structural system is well known. Conventionally, the amount of

damping in a linear structural system is expressed as a percentage of the

critical damping or modal critical damping values depending on whether

damping is everywhere the same in the structure or varies modally, respect-

ively. Thus, it is possible to estimate directly the amount of damping

in the structure and to characterize that structure as underdamped, over-

damped or critically damped. This knowledge consequently helps one to

control the response by appropriate changes of the damping in the structure.

However, for linear structural systems with different viscous damping

values for some or all of their members, the problem of determining critical

damping becomes much more difficult, because many critical damping possibili-

ties arise. This problem is of considerable importance because the availa-

bility of different damping values for different members of a structure

provides a more rational way of representing damping properties and permits

more effective response control by taking advantalge of the freedom of varying

the damping of a large number of elements.

The problem of critical damping is part of the general problem of

structural free damped vibration, which is concerned with the determination

of natural frequencies and modal shapes of viscously damped linear systems.

Necessary and sufficient conditions under which discrete and continuous

damped linear dynamic systems possess classical normal modes have been

established by Caughey and O'Kelly [1]. In a recent paper, Beskos and Boley

(2], studied free viscously damped vibrations of linear discrete systems in

which the amount of damping varied among the various structural members,

thus resulting in many "critical damping surf~w.,es." These surfaces represent
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the loci of combinations of amounts of damping leading to critically damped

motion, and thus separate regions of partial or complete underdamping from

those of overdamping. A general method for the determination of critical

damping surfaces of linear discrete systems was developed in [2]. That method

is extended in this paper to certain continuous linear dynamic structural

systems. These include one, two or three dimensional structures consisting

of uniform beam elements with a continuous distribution of mass, undergoing

flexural, torsional or axial free motion, with either internal viscoelastic

or external viscous damping. The method developed in [2) is applied to

these systems in conjunction with the use of a new kind of dynamic stiffness

influence coefficients defined for the aforementioned motions (flexural,

torsional and axial) on the basis of the exact solution of the equation of

free damped motion of a beam element. Thus, the dynamic problem is reduced

to a static-like one and the exact solution of the problem is obtained. The

use and importance of dynamic stiffness influence coefficients in treating

free and forced vibration problems of beam structures has been demonstrated

elsewhere [3-8].

To the authors knowledge, there is only one work in the literature,

namely that of Koloulek (9], which deals with viscously damped frameworks

with a continuous distribution of mass and different amounts of damping

among the various structural members. However, that work deals only with

the underdamped steadty state forced vibration case by employing a kind of

dynamic stiffness influence coefficients in complex number form. Although

only a certain class of continuous structures is considered in the present

paper, namely that of beam structures, the results obtained are representa-

tive in that they demonstrate special features common to all continuous

structures characterized by an infinite number of degrees of freedom. Other
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continuous structures for which dynamic stiffness influence coefficients

can be constructed can also be studied by the proposed method. If this is

not feasible, a finite element discretization and modeling of the structure

as a discrete system with a finite number of degrees of freedom can be

always done and the method of (2] then applied. Three examples dealing

with axial, torsional and flexural vibrations are presented in detail in this

paper to illustrate the proposed method and demonstrate the importance of

critical damping surfaces.

2. FREE DAMPED VIBRATIONS OF A BEAM ELEMENT

In this section, dynamic stiffness influence coefficients for free

axial, torsional and flexural vibratory motions of a damped linear elastic

uniform beam element are defined and constructed. Either internal visco-

elastic or external viscous damping is assumed. Internal viscoelastic

damping is accounted for by assuming, for reasons of simplicity, that the

beam material is a Kelvin solid, i.e., with a one-dimensional constitutive

equation of the form

H (I H + g ddt)c ,(1

where a is the stress, c is the strain, H stands for the modulus of elasticity

E or the shear modulus G, g is the damping coefficient and t represents time.

More general viscoelastic models as described, for example, in (10] could

also have been used without any particular difficulty. Equation (1) indicates

that, under one dimensional states of stress, the formulation of the damped

beam problem can be obtained from that of the corresponding undamped one

by simply replacing H by 11(1 + g d/dt). When external viscous damping is

present, it is accounted for in the displacement equation of the beam motion

by a damping force per unit length P proportional to the velocity and opposing
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the motion, i.e.,

P = - f(dv/dt) (2)

where f is the coefficient of damping and v is the beam displacement.

Consider a uniform linear elastic beam element 1-2 of length L (Fig. 1)

undergoing axial, torsional and flexural free damped motions which, on the

basis of a strength-of-materials theory, are governed, respectively, by

the following uncoupled equations:

EAu" + g EA;" - mU = 0 ,

(AC/J)m" + g(AC/J)$" - m - 0 (3)

EIv"" + g EI;"" + m3 = 0

for internal viscoelastic damping of the Kelvin type, and

EAu" - f; - mU = 0

(AC/J)f" - f$ - m =0, (4)

EIv"" + f +m = 0,

for external viscous damping, where u = u(x,t), v = v(x,t) and = *(x,t) are

the axial, lateral and angular displacements of the beam, respectively, E is

the modulus of elasticity g and f are the coefficients of internal visco-

elastic and external viscous damping, respectively, m is the mass per unit

length of the beam, A,I, J and C are the area, moment of inertia, polar

moment of inertia and torsional rigidity of the cross-section of the beam,

respectively, primes indicate differentiation with respect to the distance

x along the length of the beam and dots indicate differentiation with respect

to the time t.

By assuming solutions of the form

U e At

(5)
-eAt

v v e
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where u, 0 and v are functions of x only, and X is, in general, a complex

number, equations (3) and (4) are reduced to

-,2-

- 2 0, (6)

v"" + 4K4 = 0 ,

where

K1 2 mX2/EA(I + gA)
K 2 . mX2/(AC/J)(I + 9X) (7)

4K4 = MA2/EI(l + gX)

for internal viscoelastic damping, and

K2 = (mX2 + fX)/AE

K = (m2 + fX)/(AC/J) , (8)
K2

4K4 = (nX,2 + fX)/EI

for external viscous damping.

The general case of free damped motion is described by the solution of

equations (6), namely

-D, eKlx + F1 eKlx

-D2 eK2x + F2 eK2x (9)

= eKx (o3cosKx + F3sinKx) + e-Kx(o 4cosKx + F4slnKj),

where D1, F1 , D2, F2 , D31 F3 , D4 and F4 are constants. Consider the beam

element 1-2 of Fig. 2 with nodes 1 and 2, which has one, one and two degrees

of freedom per node for axial, torsional and flexural motions, respectively.

Figure 2 shows the positive directions of the nodal displacements and the

corresponding nodal forces for the three kinds of motion. The dynamic

stiffness influence coefficient Dij is defined as the force at the ith

degree of freedom due to a displacement 1.e At at the jth degree of freedom,

while all the other displacements are zero. On the basis of this definition

and by using the displacement functions (9) as well as the force-displacement
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relations

U(x) = AE iu'(x) ,

T(x) - C'(x)

V(x) -EIV'"(x) , (10)

M(x) = - EIv'(x)

with positive directions as indicated in Fig. 1, one can construct the Dij

coefficients for the three kinds of motion considered here. Thus, with

the sign convention of Fig. 2, the following element nodal force-displace-

ment relations in terms of the Dij coefficients result:

fU 1 o~ 0iI 1i211

V2  10 Lul i22 L211
for the axial motion,

{ 1i 1 12 1 (12)

for the torsional motion, and

V1  011 D12 D13 D14 VI

MI D21 D22  D23 D24 1 (
. , _ ,(13)

V2  D31 D32  D33  034 V2

.M2  D41 042 D43 044 62

for the flexural motion, where

O1l = D22 = AEK1 coth(K1L) (14)

Di2 = Dl= - AEK1 cosech(K 1L),

Do' = D 22 CK2 coth(K2L) (11 2 2 2(15)

I = a CK2 cosech(K2L)
D72 D21
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D11 D33 = 2NK2 (y2 + 4ysc - 1)

D12 '021 ' - D34 = - 043 = NK[y 2 - 2y(l 2s2)+1]

013 D 31 = (4K2N/vy)[-y2(s3 + sc 2 + c) + y(-s 3 - sc2 + c2) ,

D14 = 041 = D 023 - 032= (2NK/,)( 3 + sc2 + s)(y -y)

D22 = 44 = N(y2 - 4ycs- 1) , (16)

D24 042 = (2N/v)[y2 (s3 + sc2 -c) + y(s3 + sc2 + c)]

2 2N = 2EIK/[y2 - 2y(l + 2s 2 ) + 1]

y = e2KL , s =sinKL , c =cosKL

and where Ki , K2 and K are given by (7) and (8) for internal and external

damping, respective!),.

3. CRITICAL DAMPING SURFACES

Consider a three-dimensional beam structure consisting of a finite number

of uniform beam elements with a continuous distribution of mass and with

different amounts of damping under free motion. The damping in every beam

element may be internal viscoelastic or external viscous, or a combination

of these, and may be, in general, different for different kinds of free motion.

The free motion of every element (and so that of the whole structure) is a

combination of axial, torsional and flexural motion. Coupling effects between

the various motions are neglected in this work.

The general equation of free motion for the above described beam structure

is of the form (e.g. [7])

[D]{x) = [DJ{}eit -- {01 , (17)

where [D] is the structural dynamic stiffness matrix, whose elements are

combinations of the dynamic stiffness influence coefficients Dij for axial,

torsional and flexural motion given by (14)-(16), resulting from the super-

position of the various element dynamic stiffness matrices, and {x1 and (01

are the vectors of the nodal structural displacements and displacement
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amplitudes, respectively. The matrix ED] is thus a function of the damping

properties of the various beam elements and the eigenvalues X defined by

equations (5). Thus, in general,

(0] = [D(hrA)] , (r = 1,2,...q) , (18)

where h represents amounts of damping and q is an integer, in general, dif-

ferent from the order p of the matrix ED].

Equation (17) has nontrivial solutions if, and only if,

detCD(hrX)] = ID= 0O. (19)

The characteristic equation (19) is a transcendental equation in X which

has an infinite number of roots corresponding to the infinite number of degrees

of freedom of the structure under consideration. These roots can be negative

real or complex, resulting in overdamped or critically damped aperiodically

decaying free motion, or in underdamped oscillatory decaying free motion,

respectively. If the system has no damping (hr = 0), equation (19) is satis-

fied for an infinite number of imaginary values of X of the form iw0o where

Wo represents natural frequencies and i = 1. If some (all) of the roots

of (19) correspond to overdamping, underdamping or critical damping, the

structure is called partially (completely) overdamped, underdamped or critically

damped, respectively. Once the roots X of (19) have been determined, one can

solve (17) for the in general complex modal shapes (€}.

For overdamping or critical damping the roots of (19) are of the form

A =-b , (b>O) , (20)

and (19) becomes

1D(hr , -b)l = 0 . (21)

In the q-dimensional space with coordinates hr (r = 1,2,... q), equation (21)

represents a family of q-dimensional surfaces corresponding to overdamping

or critical damping. The problem consists of determining that b which cor-

responds to the "critical damping surface." There are actually infinitely
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many "critical damping surfaces" since there are as many critical damping

possibilities as the number of the roots X. The general method for deter-

mining critical damping surfaces of linear discrete damped systems developed

in [2], is extented here to linear continuous systems described by (17).

Thus, having in mind that critical damping represents the threshold between

overdamping and underdamping, one can conclude that among the Sb surfaces

described by (21), the critical surface Scr is the one for which the damping

is a minimum, i.e.,

(d/db)(O(hr , -b)I) = 0 , (22)

dhr/db = 0 , r = 1,2,..,q

In principle, equation (22) provides the bcr as a function of the hr's and

thus the equation of critical damping surfaces is given by (21) with b = bcr,

i.e., by

JD(hr , -bcr)J = 0 . (23)

In practice, however, one has to solve the system of simultaneous nonlinear

equations (21) and (22) numerically in a manner analogous to that described

in [2].

The above method for determining critical damping surfaces is quite general

and applicable, in principle, to the most general space beam structure; how-

ever, the practical applicability of the method is limited to small order

structures, because, to the authors knowledge, there is presently no efficient

numerical method available for treating equations (22). However, things are

greatly simplified in the particular cases in which only axial or torsional

or flexural free motion arise and one kind of damping (internal or external)

is under consideration. Fortunately, these cases deal with very large classes

of structures, such as plane frames or trusses which are usually considered

to undergo only flexural free vibrations and simple and composite beams or

--
~ ~IT~I[Jf1 I ,,



shafts undergoing axial or torsional free vibrations, respectively.

Consider a beam structure undergoing only axial or torsional or flexural

free vibrations under conditions of either internal or external damping.

The coefficients Klr, K2r and Kr for axial, torsional and flexural free

motion, respectively, of the rth beam element (r = 1,2,...,qjq) are given

on account of (7) and (8) by

K2r = [mr/(EA)r][X2/0 + rA)].
ir r rrC ( +gAJ
K 2 = Emr/(AC/J)r](X2/(l + grA)b (24)
K2r r rm(A r

4K 4 = Emr/(EI) 1['X,2/(l + grx)]

for internal viscoelastic damping, and

K~r 2 = mr/(EA) r(A 2e A)

K2r = (mr/(AC/Jr](X2 + 213 rL) , (25)

4K4  = [mr/(EI)r](X 2 + 2ar x)

for external viscous damping with

fr = 2mre r (26)

and where the coefficients gr and 0 r in (24)and(25) are, in general, different

for different kinds of motion. For the undamped case of the rth beam element

for which

X= on (n = 1,2,...,-) , (27)

where won represents the natural frequency in the nth mode of vibration and

i = /T , equations (7) and (8) are replaced by

K2  = . 2  Emr/(EA)r]lrO on r r

K2  = - o m/(AC/J) , (28)Mr 'on r r
4K4 2 [mr/(Ei)r] "

4Kro = on

When one particular kind of free motion of the beam structure is consid-

ered, the structural dynamic matrix ED] consists of linear combinations of

Dij coefficients with the same type of K coefficients. In that case (22)



becomes

(d/db)(IDf) = E(d/dKr)(IDI)'(dKr/db) = 0r (29)
(dhr/db) = 0 , r = 1,2,....,q (

which can be recognized as direct extensions of the corresponding equations

for discrete systems [2]. The derivatives dKr/db for the various cases of

motion and kinds of damping can be computed from (24) and (25) for =-b,

and in conjunction with (29)2 take the following forms:

dKlr/db = [mr/ 2 KIr(EA) r b(2-grb)/(l - grb) 2 ,

dK2r/db = Emr/2K2r(AC/J)r ] b(2-grb)/(1-grb)2 , (30)

dKr/db = [mr/16K 3 (EI)r] b(2 - g rb)/(l - grb) 2

for internal viscoelastic damping, and
dKI r / db = [mr/K1 (EA) r](b - r,

dK2r/db = [mr/K2r(AC/J) r](b -B ), (31)

dKr/db = /mr/8K3 (El) 3(b -I r) .rr r r r
for external viscous damping.

The particular point hI = h2=...=hq = h of a critical damping surface

for which conditions (29) hold true can be easily determined. Thus, on

account of (30) and (31) withl8r = and gr = g ' one can easily see that

(29)1 is satisfied for

2 - gb = 0, (32)

.for internal viscoelastic damping and

b -0 - 0 , (33)

for external viscous damping. Substitution of (32) and (33) into (24) and (25)

in conjunction with X = -b,gr = g, and 0 r  a and comparison of the results

with (28) leads to a critical value bcr of b given by

b = o ' n= 1,2,..., , (34)

nc o

-4

• . .. . . . . ... .. . .. . .r "_ _ __-_ ___ _.-_
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for all kinds of motions and damping cases. Thus, (23) takes the form

1D(h n - on =0 (35)

and serves to determine the value of h = hn for every n numerically. Notice

that in this case the structure possesses classical normal modes. Equation

(35) also indicates that a beam structure with a continuous distribution

of mass, one kind of damping and under one kind of free motion has an in-

finite number of critical damping surfaces and consequently complete critical

damping or overdamping are achieved for n

The above results could have been obtained in a different way as follows:

When h1 = h= = hq = h, combination of (24), (25) and (28) leads to the

conclusion that the value of A n in any mode n will be such that

A2 /( + gA) 2 (36)
n / n Won

for internal viscoelastic damping and

A 2 2OA = 2 (37)n n 'on

for external viscous damping. Under conditions of underdamping

X =n b nb ± iWn (38)

thwhere wn represents the damped natural frequency in the n mode and by

combining (38) with (36) and (373) one obtains the relations

bn = (1/2)gwo , wn (l/ 2) on(4 - g 2  (39)

for internal viscoelastic damping, and

bn u B ( Wn (w2  -2)1/2 (40)n n on
for external viscous damping. Considering critical damping as the threshold

between underdamping and overdamping, one can imagine the state of critical

damping as the limit of the underdamping state as the amount of damping

increases so that wn approaches zero. Thus, the conditions of critical

damping, in view of (39) and (40), are

g - 2/bncr bncr 'on (41)
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for internal viscoelastic damping, and

0 = bncr bncr = ion (42)

for external viscous damping. These equations are identical with (32)-(34).

Three illustrative examples are given below.

4. EXAMPLES

Example 1

Consider a uniform cantilever beam of length L, mass per unit length

m and axial rigidity AE. In this case, damping is uniform; the example is

included simply to illustrate the proposed method in a classical case. The

equation of free axial vibration of this beam, obtained from (11) for U1 =

U2 = 0 and uI = 0 reads

D22 "2 =0. (43)

Thus, equation (21), on account of (14), (24)1$ (25)1 and (43), becomes

coth(KIL) = 0 (44)

where

K2 = (m/AE)[b2 /(l + gb)] (45)1
for internal viscoelastic damping, and

K = (m/AE)(b 2 - 2Bb) (46)

for external viscous damping. The equation of critical damping surfaces is

again given by (44) but with (45) and (46) being replaced by

2 .(/E[2K (m/E)lon/(l + gw o)], (47)

K 2 = (m/AE)( 2  - 2 B0 ) , (48)
1 Oon on (8

for internal and external damping, respectively, in view of the condition

(34) for critical damping. The natural frequencies won can be obtained from

(44) with K, given by (28)1 and are of the form

Son = (1/2L)(2n - 1) nAVE/r n = 1,2,.., . (49)

Thus, for both kinds of damping, the critical damping surfaces are actually

I'
- . ... ...... .......- 4
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an infinite set of points which, on account of (32) - (34), are given by

gn = 2/won (50)

for internal viscoelastic damping, and

A" = Oo (51);or ex!:erytal viSCOaS aampwtpa1

Example 2

Consider the composite shaft 1-2-3 of Fig. 3 which consists of two uniform

beams of circular cross sections with length L and shear modulus G. The

polar moment of inertia, the cross-sectional area, the mass per unit of length

and the external viscous damping coefficient are symbolized by JIS AI, MIS

0 I and JIII AII, mIII Oil for the beams (1-2) = I and (2-3) = II, respectively.

The equation of free torsional motion of this shaft is obtained with the help

of (12) by superimposing the dynamic stiffnesses of the two beam elements I

and II and applying the boundary conditions 0l = 03 = 0. Thus, equation (21)

becomes

[(2) + (D1)11J = 0 (52)

where, from (15) for a circular cross section (C = GJ),

(D22)1 = GJIK 21coth(K21L)

(53)
(D'11II - GJIIK2 ILcoth(K2 II

L ) •

with K21 and K2II given by (271)2 with X = -b and C = GJ. Equation (29),

with the aid of (52), (53) and (31)2 with C = GJ, yields

(d(D 2)i/dK2i)(dK i/db) + (d(O0'l)ii/dK i)(dK ii/db) =0 ,(54)

J (D2"1)1 / I K2.1 = &G3 Ecok(K2L)- Ku Lc scK ( KaL)),
d(D'ut ),IdK 2n'm GJI(coth(KzI.) - K c sch2 (K2&)J ()I 211L(55)
dK2 Ab = (mi/K 2 1AiG)(b - B) , i = I, II

The natural frequencies of the system can be obtained from (52) with
-K2Ia K 2 K2 "n (PG) (56)

K2 1 = 2 1 1 lo n..
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where

P" (mllAl) = (miiIAll) , (57)

represents the mass density of the shaft material. Use of (56) and (57)

reduces (52) to

(Jl + l J1 ) cot(4.) = 0 (58)

with solution

won= (1/2L)(2n-l)w,,7 , n = 1,2..., . (59)

The critical damping surfaces are described by (52) with bcr obtained as

a function of a and I from (54) and (55) and form an infinite set of

curves in the$I-0II plane. For the particular case of I O JIi =

2, G/p = 1 and L = 1, a computer solution of the simultaneous equations (52),

(54) and (55) provides the following values for the first three roots I:

$I = 2.03, 5.16, 8.31. (60)

These values correspond to the first three natural frequencies

= 7/2 1.571, w 2 37/2 =4.712, Wo3 = 5v/2 = 7.854 , (61)

and indicate that the critical damping surfaces are just an infinite set of

points along the 11 axis.

Example 3

Consider the uniform continuous beam 1-2-3 of Fig. 4 with bending rigidity

El and mass per unit of length m. The structure consists of two beam elements

of the same length L but with different external viscous damping coefficients

01 and 02 as shown in Fig. 4. The equation of free flexural motion of this

continuous beam Is obtained with the aid of (13) by superimposing the dynamic

stlffnesses of the two elements (1-2) I and (2-3) a II and applying the

boundary conditions vl- = "2" -V =3 0. Thus, equation (21) becomes233
[(044) + (D22)11 =0 (62)

(r77
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where (D44)1 =(D22)1 and (D22)1 , are furnished by (16) with K, and K,, given

by (25)3 with X = -b.

Equation (29), with the aid of (62), (31)3 and (16), yields

(d(D22)1/dKI)(dKI/db) + (d(O22)ll/dKll)(dKll/db) = 0

dK./db = (m/8K EI)(b -0.)

d(D22)1/dKi = [[2(y 2 - 4ycs - 1) + 8Ki(-y2 2ycs -yc2 + YS2 A
[y2 . 2y(1+2s 2 ) + 1] - 8Ki(y 2  _ 4ycs - )(y 2 -y-2ys2-2ycs)}/

2 2 +1-24cs-(3[y2 _2y(1 + 2s 2 ) + 1]2

(m 2 )1/4

Ki  (m/ EI)(b2  2b B) , i = I, II.

The natural frequencies of the system can be obtained from (62) with

4 4 24KI = 4K I = (m/EI) ' (64)

or directly from

2D22 = 0 , (65)

where the dynamic stiffness coefficient without damping D22 is taken from

reference [4] or (7] and is of the form

D22 EIK(sinKLcoshKL - cosKLsinhKL)/(1-cosKLcoshKL) (66)

with

K2 = nA /E-. (67)

Use of (66) reduces (65) to'

tanKL - tanhKL a 0 , (68)

which has an infinite number of roots, the first three of which are given

to third decimal accuracy by

KL = 3.927, 7.069 , 10.210. (69)

Thus, by combining (67) and (69), the following expressions for the first

three natural frequencies are obtained:

SWon ( 2/ 2 ) / EI/m , n= 1,2,3,
(70)2A,, 15.421, P= 49.971, 2= 104.244

1jt1'



-17-

The critical damping surfaces are described by (62) with bcr obtained

as a function of 0, and 0I1 from (63) and form an infinite set of nonlinear

curves in the 01- 01, plane. All these curves are symmetric about the line

1 11, as it can be very easily seen from (16) and (25)3 with ,-b that

an interchange of 0, and 3i, leaves (62) unaffected; this was expected

in view of the symmetry of the structure. For the particular points of the

curves for which 1 = ,7 0 (42) yields

a n = bncr w 'won (71)

Figure 5 shows the first three critical damping curves corresponding to the

first three frequencies of (70). These curves were constructed by numerically

solving the system of simultaneous equations (62) and (63) for El - L = m - 1;

the computations were done by computer using complex arithmetic due to the

fact that KI and KII in (63)4 are, in general, complex numbers. It was ob-

served during the computation that the values of bcr for every curve were

very close to the value of bcr corresponding to the pointB I -iIII i.e.,

to the value 0 ncr -=Oon . This suggested an approximate construction of the

curves on the basis of (62) with

4K4 = (m/El)(won - 28 0 ia)
(72)

t = 1, 11, n a 1,2, ... , 9

These approximate curves drawn in Fig. 5 for EI L m 1 practically coincide

with the "exact" curves., Eventhough this suggests a simple way to construct very

good approximate curves, no generalizations beyond the above observations are

presently available. The critical damping curves C1 ,C2 ,..,Ca of the structure

of Fig. 4 with the exception of the Co- are all partially critical and separate

the 0I - 0, plane in an infinite number of regions R1,R2 ... , of which

only the first four are shown in Fig. 5. Region R1 represents complete under-

damping, while complete overdamping is achieved only at infinity as all the
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other regions represent partial overdamping.

The damping curves of Fig. 5 are the "exact" damping curves of the

continuous beam as computed with the aid of the dynamic stiffness influence

coefficients constructed on the basis of the exact equations of motion.

It is interesting to study the degree of approximation obtained by con-

structing approximate critical damping curves of the continuous beam, on

the assumption that the structure is discretized by lumping the mass as

shown in the alternative models of Fig. 6. The equation of free flexural

motion of the two degrees of freedom model of Fig. 6(a), on the assumption

that its viscous damping matrix is diagonal and by eliminating rotational

degrees of freedom, takes the form

[:6k 1j x + [1 c2{; 12EI~ [1; 3X} 1 {} 73

where x,, cI and x2 , c2 represent vertical deflections and damping coefficients

for the points 1 and 2, respectively. The static stiffness coefficients for

a beam element were taken from ll]. The natural frequencies W0 of the two

degrees of freedom system are the roots of the equation
-2M 8+119 3&

(74)

2, l
39 .-Wo;" + 11g

where

C 12EI/7(V) 3. (75)

From the approximate method of [2], the equations of the critical damping

curves of the system are

wUonM' [ ] -]oon2M' [ 21 + [ 1 0 (76)0 32 11

where

c1 - 2M' 0 1 , C2 - 2M'I02, n -1,2.

(
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For the case of El = L m n 1,

M'=0.5 , &; =13.714, (77)

and the solution of (74) is

= 14.813, w 19.596 (78)

forming a lower bound to the exact solution (70). A similar computation

for the four degrees of freedom model of Fig. 6(b) provides the following

values for the natural frequencies:

ol=15.357, =22.055, *45.656, £)4 41 .254. (79)

It is obvious from (72), (78) and (79) that both of the discrete systems

provide an acceptable approximation for the first natural frequency only.

Consequently, both of the discrete systems can provide a good approximation

of only the first critical damping curve. Figure 7 shows the first critical

damping curve for the continuous beam as obtained by the continuous as well

as the two discrete models. The main conclusion of this comparison study

is that for discrete lumped-mass models only the first few critical damping

surfaces are close to the exact ones. Accuracy of representation of the

higher damping surfaces increases by increasing the order of the discrete

model.

5. CONCLUSIONS
On the basis of the preceding discussion, the following conclusions can

be drawn with regard to the free motion of linear structures composed of

beams with a continuous distribution of mass and different amounts of internal

and/or external viscous dampi ng:

1) There exist infinitely many "critical damping surfaces" for every struc-

ture which represent the loci of combinations of damping leading to partial

or complete critical damped motion and thus separating regions of partial or

complete underdamping from those of overdainping. The dimension of these
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\ cp~.erJ amvounkuo4:
surfaces is equal to the number of Vdamping present in the system.

2) A general method is proposed for determining the equations of these

critical damping surfaces in conjunction with dynamic stiffness influence

coefficients which are functions of the damping and inertia properties of

the structure. This method is greatly simplified for systems which undergo

only one kind of motion, namely axial or torsional or flexural. For these

systems there are infinitely many partially critical damping surfaces

creating one region of complete underdamping and infinitely many regions of

partial overdamping as complete critical damping or overdamping are achieved

only for infinite damping values.

3) The critical damping surfaces obtained by the proposed method represent

the exact solution of the problem since they are constructed with the aid

of dynamic stiffness influence coefficients based on the exact solution of

the equation of motion. For complicated beam structures or other structures

with continuous distribution of stiffness, mass and damping properties, such

as discs, plates and shells, a discretization of the structure and application

of the methods of reference [2] is probably the most practical approach. The

resulting damping surfaces will of course be approximate, with a degree of

accuracy decreasing as surfaces corresponding to higher frequencies are con-

sidered.
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CAPTIONS OF THE FIGURES

Figure 1 :Positive beam displacements and forces in mechanics convention.

Figure 2 :Positive beam nodal displacements and forces.

Figure 3 :Composite shaft in torsional free motion for Example 2.

Figure 4 :Continuous beam in flexural free motion for Example 3.

Figure 5 :The first three critical damping curves of the continuous
beam of Example 3.

Figure 6 :Lumped-mass discretizations of the continuous beam of
Example 3.

Figure 7 Approximations of the first critical damping curve of the
structure of Example 3.
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